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In short

Next steps

- accurate metalloprotein simulations require QM
- BuRNN is a novel alternative to QM/MM simulations
- BuRNN is an efficient NN/MM simulation approach

- release of the BuRNN code in the GROMOS Software
- training and simulation of porphyrin systems

Metalloprotein Simulations: 
a Neural Network based Approach

Outline
Metalloproteins are important biomolecules that incorporate 
metal-ion cofactors. They are essential for various biological 
functions, among others, involved in infections and diseases. 

Metal-sites are notoriously difficult to describe via classical MD 
simulations as they involve coordinate bonds. Transition metals 
with their open shell of d-electrons further require the quantum level 
of theory. However, quantum mechanics (QM) is not feasible for huge 
systems, while molecular mechanics (MM) is not very accurate.

We have developed a hybrid QM/MM1 approach that employs Neural 
Networks2 (NN) for increased efficiency and additionally introduces a 
Buffer Region to reduce artifacts and smooth the transition between 
QM and MM: BuRNN3.

We aim to apply this NN/MM simulation method to metalloproteins in 
order to investigate their complex nature.
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QM/MM1 simulations are powerful:
- accurate for small part - QM level of theory (inner region 𝕀)
- efficient for rest - classical MM force fields (outer region 𝕆)

QM/MM simulations are limited:
- high computational costs
- artifacts at the interface

The BuRNN 
Approach

BuRNN3 introduces Buffer Region:
- buffer 𝔹 described at both levels
- 𝑉𝔹$$ − 𝑉𝔹

%$smooths transitions
- 2 QM calculations required
- artifacts at the interface cancel
- full electronic polarization of 𝔹 by 𝕀

BuRNN employs Neural Networks:
- difference of 2 QM calculations trained 

by deep NN3

- interaction energies simplify training 
- second NN for charge training

𝑉!"! = 𝑉𝕀#𝔹
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The BuRNN Workflow

Training Set 
Generation

NN Training

Expansion ?

NN/MM Simulation

energies / forces / charges

coordinates

𝑉𝕀#∆𝔹
%%(') ≈ 𝑉𝕀#∆𝔹

%%())

𝕆 𝕀
𝔹
_

𝑉𝕀#∆𝔹'' + 𝑉𝔹+𝕆%%

𝑉𝕀#∆𝔹
%%(') ≠ 𝑉𝕀#∆𝔹

%%())

B A

...
𝕀
𝔹

_

...

𝔹

𝕀
𝔹

_

𝔹

𝕀
𝔹

_

𝔹

coordinates / energies 
/ forces / charges

t + Dt

𝑉!"! 𝔹

G1

G2

G3

G4

E

Training Set Generation
- sampling of configurations 

(coordinates) by MD simulations
- extending configurations by 

QM energy minimization and 
adaptive sampling 

- 2 QM calculations for each 
configuration: 𝕀+𝔹 and 𝔹

- training database for energy 
(force) differences and charges

Hybrid NN/MM Simulations
- BuRNN implemented in GROMOS5 with 

direct interface to SchNetPack6

- buffer region by cut-off
- MM terms 𝑉𝔹+𝕆$$ with force field 
- QM interaction energies by a call of the 

NN 𝑉𝕀+∆𝔹--

- partial charges to polarize 𝔹 by 𝕀 in the 
interaction with 𝕆

- validation by 2 individual NNs (A and B)
- comparing the NN 𝑉𝕀#∆𝔹

%%(') ≈ 𝑉𝕀#∆𝔹
%%()) ?

- expanding training set when predictions 
diverge 𝑉𝕀#∆𝔹

%%(') ≠ 𝑉𝕀#∆𝔹
%%()) and retrain

Neural Network Training
- training atomistic NN on interaction 

energies (forces) with SchNet4 

- training atomistic NN on partial charges 
without final pooling layer
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[Fe(H2O)6]3+ complex in water:
- small system with metal-ligand interactions
- stable simulations, expected geometries
- agreement with QM/MM and experiments

”conventional method”

metal-ligand complex

metal
(central atom)

ligand

PDB: 
1MBN

Proof of Concept

- BuRNN reduces costs by machine learning
- BuRNN reduces artifacts by embedding scheme
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