Raman Spectroscopy of Phase Transitions in the H-Sublattice of H₂O-Ices

Alexander V. Thoeny¹, Thomas Loerting¹

¹Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria

A.V.T. is recipient of a DOC fellowship of the Austrian Academy of Science at the Institute of Physical Chemistry at the University of Innsbruck.

Introduction:

• In total, 20 different crystalline structures of water ice have been discovered [1,2,4].
• One reason for that diversity is the existence of both one H-disordered high-temperature phase and one H-ordered low-temperature phase for most oxygen lattice.
• In 2017, an alternatively H-ordered proxy of ice VI additionally to ice XV was discovered – ice XIX [1].
• Its structure was resolved in 2020 and the unit cell has twice the size of that of ice VI & XV.
• That is the first known example of alternative H-ordering.

Goal:

• Determination of mechanism and kinetics of the first known H-order-order transition in ice chemistry.
• Investigation of potential other examples for alternative H-ordering.

Method:

• **Raman-Spectroscopy** is a method in order to detect inter- and intramolecular vibrations of a sample by a special scattering effect – Stokes scattering.
• After undergoing Stokes scattering the energy of the scattered light is reduced by the vibrational energy.
• These differences can only be measured if the inciting light is monochromatic. In these experiments a laser of 521 nm wavelength are used.
• As inter- and intramolecular vibrations get detected, Raman spectroscopy is especially sensitive for structural differences in the H-sublattice.

Results:

• Raman spectra of ice VI, XV and XIX are distinguishable from each other.
• The complete H-order-order transition can be traced through Raman spectroscopy.

- Ice XIX is heated to different temperatures and Raman spectra are recorded there isothermally. (top, right)
- The ice XIX and ice XV-fraction are calculated by superpositions. (top, middle)
- These fractions can be plotted against their transformation time. Through Avrami fits parameters of interest such as the rate constant \(k \) and the Avrami exponent \(n \) can be derived. (top, left)

Sources:

[6] bwtek.com/raman-theory-of-raman-scattering/Fig. B4

Activation energy for ice XIX -> XV:

\[E_A = 23 \text{ kJ/mol} \]