Context

Ecosystem Crises require Earth System Stewardship

- Global agreement: World agreed to tackle the climate crisis
- Earth System Stewardship: We aim for reducing GHG emissions to net zero term, ‘Stabilised Earth’.

Research questions

1. What are the environmental targets for ‘buildings’ during transition and long-term?
 - How can we define environmental budgets for buildings based on top-down targets?
 - What are the environmental budgets for buildings and building stocks?

2. Which building design features and strategies enable meeting environmental targets?
 - Which design strategies and features provide environmental benefits in current building practice?
 - How can technological and social innovation further improve environmental performance?

3. How can we use the findings to test scenarios for building stock development within environmental limits?
 - How can we use the environmental data of buildings for modelling building stock development scenarios?
 - What are the environmental synergies and trade-offs when applying promising building design strategies at macro-scale?

Results

Meta-study: Embodied GHG emissions: The hidden challenge for effective climate change mitigation [Röck et al. 2020]

- Method
 - Systematic analysis of >500 building LCA cases, synthesis from 318 building results, harmonized (per m²GFA, RSP 30 years), categorized (by energy performance).

- Findings
 - Life cycle GHG emissions have reduced due to energy efficiency improvements. Meanwhile, embodied GHG emissions increased, now dominating the life cycle (xw%)
 - Upfront embodied GHG emissions lead to carbon spike (material production) and dominate the first ~30 years (timeframe for effective climate change mitigation) (w%)
 - Optimisation of full building life cycle is required to achieve net-zero GHG emissions within carbon budgets (xw%).

Synthesis: Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions [Habert et al. 2020]

- Context
 - Target values for creating carbon budgets for buildings are important for developing climate-neutral building stocks.

- Findings
 - A framework is proposed to accommodate these different perspectives and spatio-temporal scales towards harmonised and comparable cross-sectoral budget definitions (see F1).
 - This analysis highlights the crucial need to define the temporal scale, the roles of buildings as physical artefacts and their economic activities (saw%)
 - This will assist regulators and building design decision makers to coordinate and incorporate their specific responsibility at different levels or scale of activity to ensure overall coherence.

Outlook

Next steps in this research will be:

1. Life cycle assessment (LCA) of building case studies
2. Technological innovation: Analysis of environmental potentials of buildings and building elements using bio-based or regenerative materials or innovative building energy concepts
3. Social innovation: Analysing potentials for increasing occupational density through innovative building typologies

References

[R5] Rock, M. Ruschi Mendes Saade, M. Balouktsi, F. Nygaard Rasmussen, H. & Dr. Alexander Passer. Embodied GHG emissions lead to carbon spike within life cycle of buildings, for different building types, differences by energy-performance class. https://doi.org/10.1126/science.281.5374.190

PUBLICATIONS

BUILDING FUTURE(S)

Environmental modelling of buildings and building stock dynamics for supporting active development within environmental boundaries

Development within the Safe Operating Space

- It is a global challenge to adapt to climate change effects while at the same time staying within GHG emission budgets.

- Beyond GHG emissions, it is important to consider wider environmental implications, e.g., Planetary Boundaries.

- Challenge: To enable transition and long-term development of human societies within the ‘safe operating space’.

Buildings and Construction to transition to Net-Zero

- Construction and operation of buildings account for ~40% of global GHG emissions.

- Target: ‘Net-zero’ GHG emissions across the full building life cycle (construction and operation).

- Challenge: Ensure transition to net-zero and long-term development within safe operating space for both new and existing buildings (stocks).

Next steps

1. Life cycle assessment (LCA) of building case studies
2. Technological innovation: Analysis of environmental potentials of buildings and building elements using bio-based or regenerative materials or innovative building energy concepts
3. Social innovation: Analysing potentials for increasing occupational density through innovative building typologies

Mehr zu diesem Projekt im ÖAW Podcast!