PCK2 balances TCA cycle flux and mitochondrial
respiration to maintain the redox equilibrium in starved

lung cancer cells
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PCK2 enables metabolic flexibility upon starvation

Introduction

Cancer cells undergo metabolic reprogramming in order to adapt to fluctuating
nutrient availability. One up-regulated metabolic pathway is gluconeogenesis,
the reversal of glycolysis. The key enzyme and bottle neck for gluconeogenesis is
phosphoenolpyruvate carboxykinase (PEPCK) [1]. Our lab and others described
that cancer cells metabolize small non-carbohydrate molecules into serine,
purine nucleotides and the glycerol backbone of phospholipids via PCK2, the
mitochondrial isoform of PEPCK under starvation conditions [2,3,4]. Silencing of
PCK2 led to decreased cell viability in vitro and in in vivo xenograft models [3,4].
Here we show the importance of PCK2 beyond its necessity for the synthesis of
glycolytic intermediates.

Summary

In summary, we show that PCK2 plays a cataplerotic role in lung cancer cells,
inhibiting excessive respiration and the formation of ROS under starvation
conditions. Accordingly, PCK2 inhibition significantly impaired colony formation
by starved lung cancer cells. As a conclusion, PCK2 inhibition could potentially be
utilized as a therapeutic approach to prevent metabolic adaptation and to
enhance the formation of cell-damaging ROS in lung cancer cells.
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RESULTS | — PCK2 silencing increases TCA cycle intermediates
and enhances respiration in starved lung cancer cells
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Figure 1. PCK2 expression, TCA cycle intermediates and mitochondrial
respiration in H23 lung cancer cells. (A) PCK2 expression in H23 cells cultured
under starvation (0.2 mM glucose, 0% dialyzed FCS (dFCS)) or non-starvation
conditions (10 mM glucose, 10 % dFCS) for 0/24/48 and 72h. (B) H23 cells
stably expressing Ctrl sh or PCK2 sh1l were transfected with the empty vector
(ctrl sh_v and PCK2 sh1l v) or PCK2-shl resistant PCK2 (PCK2 shl mtl) for
rescue and cultured for 24h before TCA cycle intermediates were measured
with GC-MS and analyzed with Matlab. (C) H23 cells were transfected, treated
and analyzed as described in (B), non-starvation and starvation media
contained 2 mM of 13C. glutamine. (D,E,F) H23 cells were treated as described
in (B) and (D) protein was collected and (E,F) oxygen consumption was
measured with a Seahorse analyzer. (E) H23 cells stably expressing PCK2 shRNA
(PCK2 shl) or non-silencing shRNA (Ctrl sh) were treated with starvation
medium containing either 0 mM (medium w/o lactate) or 10 mM lactate
Results are shown as mean +/- SEM. *P<0.05 **P < 0.01 ***P < 0.01.

RESULTS Il — PCK2 silencing increases mitochondrial superoxide
and decreases GSH/GSSG ratio. PCK2 silencing inhibits while
antioxidants rescue colony formation under starvation
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Figure 2. PCK2 silencing affects mitochondrial superoxide levels and
GSH/GSSG ratio in H23 cells. Antioxidants rescue colony formation in H23 and
A549 lung cancer cells. (A) H23 cells were treated as described in (Figure 1 A).
Mitochondrial superoxide levels were detected with the MitoSox dye, (B)
GSH/GSSG levels were measured using a commercially available kit. (C) H23
cells stably expressing PCK2 shRNA (PCK2 sh1) or non-silencing shRNA (Ctrl sh)
were cultured under starvation conditions, if indicated (C) 2 mM GSH or (D)
different amounts of H,O, were added. After 72 h of treatment, media was
changed to normal growth media to allow colony formation to proceed. Colony
area was measured with Imagel. (E) A549 cells transfected with either a PCK2
silencing siRNA (PCK2 si1l/PCK2 si2) or a non-silencing siRNA (ctrl si) and
cultured under starvation conditions, if indicated 100 uM Trolox or 2 mM GSH
were added, colony formation was performed as described in (C). Results are
mean +/- SEM. *P<0.05 **P < 0.01.
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RESULTS [ll — Additon of the TCA cycle intermediate Dimethyl

L-malate phenocopies PCK2 silencing
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Figure 3. Dimethyl L-malate (DMM) phenocopies effects of PCK2 silencing.
(A,B,C) H23 cells were cultured under non-starvation or starvation conditions, if
indicated 5 mM DMM were added. (A) oxygen consumption was measured with
the Seahorse analyzer, (B) mitochondrial Superoxide was measured with the
MitoSox dye and flow cytometry and (C) GSH/GSSG ratio was determined with a
commercially available kit. Results are mean +/- SEM. *P<0.05, **P<0.01,
*¥**¥P<0.001
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