A novel gene defect affecting actin dynamics reveals unexplored links between immunodeficiency and autoinflammation

Jana Block1,2,3, Christina Rashkova1,3,4, Irinka Castanon5, Rouven Schoppmeyer6 Loïc Dupré7,8, Kaan Boztug1,2,3,4,7,9

1Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; 2CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; 3St. Anna Children’s Cancer Research Institute, Vienna, Austria; 4Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria; 5Molecular Cell Biology, Sanquin Research, Amsterdam, The Netherlands; 6Center for Pathophysiology of Toulouse Purpan, INSERM UMR5282, CNRS UMR5282, Paul Sabatier University, Toulouse, France; 7St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; # These authors contributed equally to this work.

BACKGROUND

The study of inborn errors of the immune system (IEI) has revealed several key regulators of cytoskeleton dynamics, essential in human immunity. Given that many of the identified genes signal through common pathways, the variety of clinical and experimental phenotypes arising from defects in single actin regulators is striking1. Our study identifies novel variants in a hitherto poorly studied actin-regulatory protein as the underlying cause of a novel immune dysregulation syndrome with severe anemia in three unrelated patients.

Identification of genetic variants in index patients

<table>
<thead>
<tr>
<th>Clinical symptoms</th>
<th>Patient</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent infections</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic inflammation</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurological disease</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Pedigrees and clinical phenotype of patients

Morphological and functional assays to dissect the protein's function in actin cytoskeleton regulation in T cells

Zebrafish model to investigate role of actin cytoskelton regulation in hematopoiesis

Cas9 protein + 3x sgRNA 80% KO in F0

Transgenic line to study role in erythropoiesis

Figure 5. Generation of zebrafish KO model to study role in hematopoiesis

OUTLOOK

- Reconstitution of wild-type expression for rescue experiment using CRISPR/Cas9 knock-in strategy
- GFP tagging of endogenous protein for interactome studies
- Analysis of cytokine production upon stimulation in T cells
- Assessment of erythroid progenitor populations in bone marrow aspirate and zebrafish model

REFERENCES