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Reinforcement learning (RL) considers the very general
framework of an agent taking actions in an environment to
accumulate rewards, which can be seen as a sequential
decision-making problem. These rewards act as feedback from
the environment and quantify the performance of the agent
with regard to the task/environment.
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Reinforcement learning: quantization scenarios

While many quantum algorithms for (un)supervised learning have been proposed
in the last decade, relatively few have been dealing with quantum reinforcement

learning (QRL).
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Table 1: A comparison of the three paradigms of machine learning. The history of a
reinforcement learning agent is a sequence a states, actions and rewards it has experienced.
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m = P(actions | states) The reinforcement learning framework. An agent is
situated in an environment with which it maintains a
cyclic interaction. During this interaction, they
exchange states, actions and rewards.
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Depending on which of the agent, the environment (and their interaction)
should be granted quantum mechanical abilities, three different settings can be

casted as QRL. My PhD project mainly focuses on the QC and QQ scenarios.

The curse of dimensionality and its solutions

Traditional methods for RL rely on learning a merit function defined on the entire state-action space,
that estimates the expected future rewards of an agent when performing a particular action in a given
state. When learned on the entire state-action space, an optimal behavior (or policy) for the agent can
be derived by following the actions with the largest merit value in any encountered state.

State 1 State 2

State |m

@on |A| «.. Action2 Actionl \

M(sl,al) M(SQ, G,l)

M(Sl,ag)

M(Sﬂ,djﬂ

M(s,a) can be Q(s,a) or h(s,a)

* Projective Simulation (PS) [1]:
Rt (s,a) « hO(s,a) —y,s (AP (s,a) = 1) + 7

* QQ-learning [2]:
Q0 D(s,a) « (1—a)QW(s,a) + a|r+ y max QW (s, a)

= Policy: eM(s,a)
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* Drawbacks:
 Lack of generalization: values updated one at a time
« Slow learning: |S| x |A4| values

The most basic learning algorithms for RL (e.g., Q-learning and Projective Simulation below)
rely on a table of values stored in memory to approximate the merit function. These stored
values are updated using an update rule proper to the learning method, and according to the
rewards collected by interacted with the environment when following a given policy. This
policy is itself derived from the stored table through normalization of its columns.

In real-world environments, e.g., Go play or Deep Q-networks [Q_

quantum experiments described above, the
size of the state and action spaces is gigantic.
But basic tabular methods update one value
in the table at a time, leading to learning
times at least as large as these spaces.

A common solution to this problem relies on
function approximation models, such as
artificial neural networks. These do not
represent each value in the table separately
but define a family of functions parametrized
by a set of weights. Training then consist in
finding the most suited function (i.e.,
weights) in this family.

* Efficient sampling from policy

Cons:

* Poor representational power in large
action spaces (due to the size of the
output layer)

Quantum enhancements for reinforcement learning

Quantum enhancements can be of two kinds:

 Quantum algorithms to speed-up sampling from the agent policy

Using quantum subroutines such as amplitude amplification, one can gain quadratic speed-ups
over existing classical methods for sampling [4-6]
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Variational quantum circuits
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Quantum Boltzmann machines

 Quantum generalizations of function approximation models to gain a learning advantage



