Novel and Functional Carbon Aerogel Networks by Templating with Polystyrene Latex Spheres

Miralem Salihovic¹, Nicola Hüsing¹ and Michael S. Elsaesser²
¹Paris-Lodron-University of Salzburg, Department of Chemistry and Physics of Materials, Salzburg, Austria

Introduction and Motivation

- Carbon aerogels are synthetic materials (typically produced by a sol-gel process), with low densities (0.01 – 0.1 g/cm³), high porosities (up to 99%) and surface areas (500 – 2500 m²/g). Due to their electrical conductivity in addition, they are used in high tech energy storage applications, e.g. electrodes in supercapacitors, Lithium-ion batteries or fuel cells, catalyst supports or capacitive desalination and separation systems. [1]
- Typically, carbon aerogels are composed of a microstructure of irregularly shaped, interconnected bead-like chains [1]
- This work introduces a new and unique microstructure for freestanding and monolithic carbon aerogels by templating with polystyrene nanospheres: a microstructure built-up of homogeneously sized hollow spheres (“nanocapsules”), which we describe with the term “spherogel”.
- This new approach yields a uniquely homogeneous and tailorable (sphere thickness and size) aerogel microstructure, improved capacitance and cyclability in electrochemical tests compared to pristine carbon aerogels as well as the possibility to incorporate species into the carbon network. [2,3,4]

Synthesis

![Synthesis Process](image)

Results

![Results Image](image)

Conclusions and Outlook

- Sphere templating with polystyrene is a powerful strategy to tailor the morphology and pore structure of unique freestanding and monolithic carbon aerogels built-up of hollow spheres which show improved electrochemical performance (“spherogels”).
- Outlook: further investigations on the relationship of morphology to electrochemical behavior or mechanical properties, and fabrication of hybrid carbon spherogels. Further research for different applications in energy storage systems (e.g. fuel cells, batteries).

References

Acknowledgments
MS gratefully being a recipient of a DOC Fellowship of the Austrian Academy of Sciences. TEM measurements were carried out on a JEOL JEM 2000 TEM which was funded by FWF (Österreichische Fonds zur Förderung der wissenschaftlichen Forschung, Projekt No. P24488-N15).