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Towards quantum networks with 
semiconductor quantum dots
Christian Schimpf, Institute of Semiconductor and Solid State Physics,
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Emerging technologies demand the realization of quantum networks, allowing to share quantum
information between different nodes [1]. Semiconductor quantum dots are promising candidates for this
task as they can act as almost on-demand sources of entangled and indistinguishable photon-pairs [2,3,4]
in a long-haul photon-based quantum network [5]. We report on the application of Photon Correlation
Fourier Spectroscopy [6,7] - which greatly aids the improvement of the emission characteristics of the
here used droplet-etched GaAs quantum dots [8,9]. Further, we demonstrate experimental entanglement
swapping [10] and quantum key distribution [11,12] with GaAs quantum dots, representing two pivotal
concepts for the realization of a practical quantum network.
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 Population of biexciton (XX)
state by resonant two-photon 
excitation (TPE)

 Radiative decay by emitting two
entangled photons (XX, X)

Potential tuning of the fine structure 
splitting by piezo-electric actuator [13] 

Multi-photon probability
< 0.00008 [2]

Fidelity to f+ Bell state
= 0.978(5) [4]

Entanglement swapping via „Bell state measurement“ (BSM)
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Entangled and indistinguishable photon pairs from GaAs quantum dots [2,3,4]
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BBM92 protocol [11] with entangled photons

Quantum Key Distribution [11,12]
Secure communication in a quantum network

Interconnection Application

 Raw qubit error rate (QBER): 1.91%
(due to non-unity entanglement and imperfect optical setup)

 Key rate before error correction: 135 bits/s
 Key rate after error correction: 85 bits/s

encryption transmission decryption

 Quantum key distribution between two buildings,
connected by a 350 m fiber

 Automatic synchronization and polarization stabilization

Entanglement Swapping [5]
Towards repeaters in a quantum network

 Fidelity to expected Bell state: 0.58(4)  (Classical limit: 0.25) [5]

 Two entangled photon pairs from one quantum dot (time shifted)
 Bell state measurement between the two X photons
 Full state tomography on remaining XX photons
 XX photons now entangled  Quantum repeater in a network

X XX

„Early“ (E) and „Late“ (L)
entangled photon pairs

Indistinguishability
~ 0.75 [3]

Time resolved line broadening,
obtained by Photon Correlation Fourier Spectrocopy [7]

 Charge- and spin-noise broaden the line
width beyond the Fourier limit (2G) [14]

 Decrease of indistinguishability when
interconnecting multiple quantum dots

 Ongoing research to surpress dephasing
mechanisms


