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Motivation

Many-body quantum physics – exponentially growing Hilbert space
In quantum mechanics, the size of the N - particle Hilbert space associated with grows exponen-

tially with N , i.e. if a single body can be described with d-dimensional Hilbert space, the full N -
body space is dN -dimensional. In this project, we deal with this problem by harnessing the power
of recently emerged techniques.
Recent developments in quasiparticle physics

The angulon quasiparticle was introduced in 2015 by Richard Schmidt and project supervisor
Mikhail Lemeshko [1]. It describes a quantum rotor (such as a rotating molecule in a many-body
bosonic bath (e.g. superfluid helium nanodroplets). The angulon has already been used for ex-
plaining the renormalization of molecular moments of inertia in superfluid helium, broadening
of lines in spectra of symmetric-top molecules, rotation of cold molecular ions in a Bose-Einstein
condensate, and microscopic modeling of the Einstein–de Hass effect, to name a few.
Recent successes of machine learning methods in quantum physics

Recent years have witnessed a tremendous success of machine learning applications in quantum
many-body physics [2, 3]. These techniques have been so far applied mainly to lattice spin and
bosonic systems. In this DOC project, we extend this to quasiparticles.

Machine learning approaches

The core ideas begind the approach that we develop are roughly based on from Ref. [4]. This
method used variational principle. The goal is to introduce an Ansatz, ψ(~s) and minimize the
energy:

E =
〈ψ| Ĥ |ψ〉
〈ψ|ψ〉 . (1)

In this approach, a Restricted Boltzmann Machine, which is a well-established concept in com-
puter science, is used as a variational ansatz for spin-1/2 systems. On top of the visible spins vi,
i ∈ 1 . . . N , the authors introduce additional „hidden” layer of spins hj, j ∈ 1 . . .M . The complex
variational parameters are {ai}, {bj} and {Wij}. Then, the Ansatz is:

ψ(~s) = 〈~s|ψ〉 =
∑
{hj}

exp

∑
i

aisi +
∑
j

bjhj +
∑
ij

Wijsihj

 , (2)

where |~s〉 is a Hilbert space basis vector corresponding to the visible layer (i.e. physical spins) con-
figuration ~s = s1, s2, . . . , sN . The sum goes over all possible hidden spin configurations. Hence, it
can be computed exactly and the ansatz assumes the following form:

ψ(~s) = 〈~s|ψ〉 =
∑
{hj}

exp

∑
i

aisi

∏
j

bj +∑
i

Wijsi

 (3)

One performs stochastic sampling of the system with Metropolis-Hastings algorithm, which is a
Monte Carlo method commonly used to get stochastic estimates of energy and its gradients with
respect to variational parameters.
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Key interim result

We developed [5] a novel machine-learning-based approach to the polaron quasiparticle.
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Figure 1: Visualization of the NCS approach. The input consists of Fock occupation numbers ni for each of bosonic
modes i = 1, . . . , N , corresponding to discrete k values ki. The input is fed to a multilayer perceptron with arbitrary
number and size of the hidden layers, see text for details. The number of neurons in the output layer is equal to the
number of inputs (k-points). Each of the outputs λi, is transformed using the information from the input, λi → λnii /

√
ni!.

These numbers are multiplied to form the wavefunction ψ. All neurons in the hidden layers are densely connected to
all neurons in the neighbouring layers; for clarity of the picture not all of them are visualized with grey lines. Figure
adapted from Ref. [5].
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Figure 2: Representative power of the proposed approach. The optimized variational energy (orange dots, in units
of ~ω0) is compared with exact diagonalization (ED), see right y-axis for percent scale relative to ED; and mean-field
result for a system with 2 bosonic modes. The inset shows percent difference to ED for the four largest network sizes.
Figure adapted from Ref. [5].
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Figure 3: The energy divided by number of k-points calculated with the NCS approach as a function of the number of
k-points on an equidistant grid between k = −1 and k = 1. Error bars for NCS approach are smaller than point size.
Dashed lines guide the eye. Figure adapted from Ref. [5].
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