Norbert Werner wird für seine hervorragenden Forschungen auf dem Gebiet der Röntgenastronomie ausgezeichnet.
Most of the Universe consists of dark energy and dark matter, which are hidden from our view. However, even most of the “ordinary matter”, made of standard-model particles, remains unseen and unexplored. Only its small fraction has turned into stars - most remains in the form of a hot, strongly ionised, low-density, X-ray emitting plasma that permeates the gravitational halos from the scale of galaxies, through groups, to massive clusters of galaxies. Since the hot phases at all these scales share crucial similarities, they are often called hot atmospheres. They can be best probed by observations at soft X-ray energies, which require spaceborne observatories. Norbert Werner's research has been mainly focused on studying the dynamics, thermodynamics, and the chemical composition of hot atmospheres using X-ray spectroscopy. Among other results, Norbert Werner's studies contributed to the first detection of X-ray emitting gas as well as dark matter in a filament connecting two cluster of galaxies Abell 222 and 223; to the measurement of turbulence in the hot atmospheric gas, as well as to measurements indicating that the hot plasma has been uniformly enriched in heavy elements by supernovae more than 10 billion years ago, during the period of maximum star formation and black hole activity.
Hot atmospheres are stabilised by the activity of their central supermassive black holes, which heat the gas, preventing its runaway cooling. To create a feedback loop which stabilises the atmospheres, their thermal state must influence the power output of the black hole. This might happen if the hot atmospheres are prone to “precipitation” (cooling) by condensing into cooler clouds that rain toward the centre, leading to a rise in the accretion rate, triggering a response in the form of jets. Dr. Werner's research has contributed to the detection of a correlation between the thermodynamic properties of the hot atmospheres and the presence of cooled gas in nearby giant elliptical galaxies. Norbert Werner's earlier studies have also contributed to the finding that black hole activity can uplift relatively large amounts of cooling gas from the innermost regions of their host galaxies and thus prevent cooling and star-formation.
Recently, a part of Norbert Werner's efforts has focused on helping to demonstrate that nano-satellites, so called CubeSats, can also perform the critically important monitoring of cosmic explosions called gamma-ray bursts, some of which are the electromagnetic counterparts of gravitational-wave events. This work, which is being performed in a close collaboration with colleagues in Hungary, Japan, Slovakia, and Czechia is ongoing and will soon result in the launch of the first dedicated nano-satellites.
Nobert Werner hat 2008 im Fach Astrophysik am Netherlands Institute for Space Research an der Utrecht University promoviert. Von 2008-2011 hatte Norbert Werner eine Stelle als Postdoctorand (Einstein-Stipendiat) an der Standford University; anschließend eine weitere Postdoctoranden-Stelle (2011-2013) am Kavli Institute for Particle Astrophysics and Cosmology, ebenfalls an der Stanford University.
Von 2013-2014 war Norbert Werner Gastwissenschaftler bei der Japan Aerospace Exploration Agency (JAXA) und wissenschaftlicher Mitarbeiter der Stanford University (2013-2016). Seit 2017 ist Norbert Werner außerordentlicher Professor an der Universität Hiroshima. Von 2016-2020 war er Leiter der MTA-ELTE Lendület Hot Universe Research Group an der Eötvös Loránd Universität Budapest. Seit 2016 ist Norbert Werner außerordentlicher Professor am Department für Theoretische Physik und Astrophysik der Masaryk-Universität in Brünn. Seit Juli 2020 leitet Norbert Werner die Forschungsgruppe Hochenergie-Astrophysik an dieser Universität.
Der Ignaz L. Lieben-Preis wird vergeben an Wissenschaftler und Wissenschaftlerinnen unter 40 Jahren, die das Doktorat abgeschlossen haben, herausragende Arbeiten in ihrem Fachbereich nachweisen können und die während der letzten drei Jahre vor der Antragstellung (Stichtag: Einreichtermin) in einem der folgenden Länder durchgehend wissenschaftlich tätig gewesen sind: Bosnien-Herzegowina, Kroatien, Slowakei, Slowenien, Tschechien, Ungarn oder Österreich. Höhe des Preises: USD 36.000,-